
Journal of Sound and Vibration (1999) 220(1), 67–82
Article No. jsvi.1998.1920, available online at http://www.idealibrary.com on

FREQUENCY DEPENDENCE OF PIPE ELBOW
SHAKING FORCES GENERATED BY INTERNAL

ACOUSTIC FIELDS

J. B. O’B†, A. G. L. H and R. J. R

Department of Mechanical Engineering, University of New Brunswick,
Fredericton, NB, Canada E3B 5A3

(Received 8 December 1997, and in final form 13 August 1998)

The forced vibration of a piping system due to internal acoustic waves is a
frequently observed phenomenon. This paper introduces a new theoretical model
for the shaking forces acting on a piping elbow. The model prediction of the
restraining forces required to hold a piping elbow stationary were tested against
measurements with single frequency, internal sound waves resonating within a
piping system. The experiments were performed in a test rig in which the elbow
is supported directly by force transducers, but isolated dynamically from the
remainder of the piping. The air column contained by the pipe was driven by a
loudspeaker at frequencies corresponding to its first three plane-wave modes.
There was no average flow. The measurements show that both the magnitude and
direction of the restraining force are affected by elbow position, measured relative
to the standing wave position, and the sound frequency. The predictions from the
theoretical model of the shaking force agree well with the measurements.
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1. INTRODUCTION

The flow induced vibration of a piping system is a problem that can occur in
circumstances where heavy gases, such as high pressure steam, are being
transported through lightly supported pipes having a large pressure drop and
changes in flow direction. For example, Hartlen and Jaster [1, 2] in a study of main
steam–pipe vibration at the Bruce Nuclear Generating Station cite internal ‘‘organ
pipe’’ modes driven by turbulent flow ‘‘noise’’ as a probable cause. There are many
sources of such turbulent noise in a piping system; including valves, side-branches,
elbows, and orifice plates. These noise sources are typically broadband random
in nature [3] and therefore are capable of exciting modes of fluid compression
having a wide range of frequencies. However, for a piping system whose diameter
is small compared to its length, the plane wave modes absorb the most energy,
and these can travel large distances through a piping system to produce shaking
forces at remote changes in piping direction, such as elbows, or changes in pipe
cross-section, such as headers. The present work was motivated by our experience
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with a piping system where the turbulent noise from a governor valve excited
pressure ‘‘pulsations’’ having amplitudes as high as 7000 Pa (1 psi) in a 635-mm
diameter pipe. Considering the pressure forces alone, this would result in peak
dynamic forces of 2200 N (500 lbf). Where consecutive elbows are positioned near
out-of phase pressure peaks, forces of nearly 4400 N (1000 lbf) on the intermediate
piping are possible.

While there has been much work done on sound transmission through piping
elbows [4], and on noise transmission through pipe walls and the response of pipe
walls to internal acoustics [3, 5], there appears to be very little study of the shaking
forces on a piping elbow due to internal sound waves. Existing design references
(e.g., reference [6]) give only a scant treatment of pressure waves due to
reciprocating pumps acting on a pipe elbow, suggesting that an estimate of the
fluctuating force on a pipe elbow be calculated as the product of the maximum
pressure in the piping run and the cross-sectional area of the pipe. A more
complete treatment of the problem is provided by Gibert et al. [7] who give a
formulation for a coupled pipe–fluid vibrating system. This formulation considers
both a change in pipe cross-sectional area and a change in local radius of curvature
(such as occurs at a pipe elbow) as a source of force. The analysis, however, does
not include the rate of change of momentum of the fluid within the curved section
which, as this study shows, can have a significant effect on the shaking force at
higher frequencies.

The objective of the present study was to measure the forces on an elbow due
to internal sound waves and compare these with a theoretical model formulated
using an integral momentum balance. This study does not consider the effects of
average flow through the piping system or the source of sound excitation. The
experimental apparatus was built with two straight lengths of pipe and an
intermediate elbow which is dynamically isolated from the piping and supported
by force transducers. The air column was driven sinusoidally by a cone loud
speaker at the first three resonant frequencies. Direct measurements of the shaking
forces, as well as the internal pressure field, were made for various positions of
the elbow relative to the standing sound waves at each frequency. The measured
forces were found to compare favorably with those predicted by the theoretical
model in cases where the measured pressure field matched the single frequency
resonant pressure waves used in the analysis.

2. THEORETICAL MODEL

The theoretical model derived in this section provides a relationship between the
restraining force required to hold the pipe elbow stationary and the amplitude and
wavelength of the sound waves within it. It is based on the simplifying assumptions
of a rigid pipe elbow and single frequency, resonant, plane-wave acoustic pressure
and velocity fields. This analysis differs from the previous analyses of Wachel et
al. [6] and Gibert et al. [7] because it includes the rate of change of fluid
momentum within the elbow which is found to be significant at higher frequencies.

Figure 1 shows the control volume which is used in the analysis. It cuts through
the pipe walls at each face of the elbow, perpendicular to the pipe axis, and
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includes the elbow itself. The acoustic pressure and velocity within the air column
are modelled as a set of plane standing waves described by the expressions

p(s, t)=P sin (2pft) sin 02pf
c

s1, V(s, t)=
P
rc

cos (2pft) cos 02pf
c

s1es .

(1, 2)

Here, the es direction is taken to be locally tangent to the curvilinear co-ordinate,
s, which runs along the centreline. The pressure and velocity are then constant on
planes that are perpendicular to es at any position s. Thus, the wave distortion
which would be required to turn the wave through the elbow is neglected, and the
pressure and velocity given by equations (1) and (2) should be considered as
average values over each cross-section. This approximation is good for sound
frequencies that are low compared to the first acoustic cut-off frequency [4].

The force required to restrain the pipe elbow, FR , from the action of the acoustic
waves described by equations (1) and (2) was calculated using the integral force
balance [8],

FR +FP =
d
dt 0ggg

CV

Vr d[1+gg
CS

Vr(V · n) dA, (3)

where the weight of the elbow and fluid are neglected. FP is the force resulting from
the fluid pressure acting on the surface of the control volume, but, since the elbow
is assumed to be surrounded by ambient pressure, it may be calculated by
integrating equation (1) over the two streamwise faces. The integrals on the right
hand side of equation (3) represent the rate of change of the momentum within
the control volume and the net flux of momentum out of the control volume,
respectively. These integrals may be evaluated from the assumed form of the
velocity field described by equation (2) since the pipe elbow itself is assumed to
be rigid and stationary (i.e., non-vibrating). It should be noted that FR is the total

Figure 1. Control volume and co-ordinate system for an elbow.
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Figure 2. Ellipses formed by parametric equation (4) for the component of restraining force
required to balance the pressure acting on an elbow.

restraining force and includes the pipe wall stresses and any forces provided by
external supports.

It is useful at this point in the analysis to introduce a new variable SE , which
specifies the position of the elbow along the co-ordinate s, the length of the elbow
LE , and the length of the acoustic wave l. SE is defined as the distance from a
pressure node to the mid-point along the centreline of the pipe elbow. The position
of the streamwise faces of the elbow can be written as SE +LE /2 and SE −LE /2.
This allows the x and y components of the pressure force FP to be written as

FP (t)=PA sin (2pft)

sin 02p
SE

l
− p

LE

l 1
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In the time domain, it is clear that the x and y components of the pressure force
are in phase with each other. The amplitude of FP depends on the ratio of elbow
length to sound wavelength, and the position of the elbow relative to the
sound field. Figure 2 is a plot of the amplitude of −FP /PA in the (Fx , Fy ) plane
for the values of LE /l that correspond to the elbow geometry and three sound
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frequencies tested in the experimental part of this study; values of SE /l range from
0 to 1·0 which corresponds to the elbow being moved through one full wavelength
of a standing pressure wave. Because it is plotted as −FP /PA, this plot should be
interpreted as the component of the restraining force required to balance the
pressure acting on the pipe elbow.

Each ellipse in Figure 2 corresponds to a value of LE /l; each position on the
perimeter of an ellipse corresponds to a value of SE /l. The maximum amplitude
and direction of FP is determined by drawing a line from the origin (0, 0) to the
appropriate value of SE /l on the ellipse corresponding to the correct LE /l. As
expected, the maximum force clearly occurs when the elbow is positioned at the
pressure anti-nodes (SE /l=0·25, 0·75). Figure 2 also shows that, as LE /l is
increased, i.e., increasing sound frequency, the pressure force decreases slightly for
an elbow positioned near a pressure anti-node (SE /l=0·25, 0·75), whereas it
increases greatly for an elbow positioned near a pressure node (SE /l=0·0, 0·5).

The time rate of change of momentum within the control volume is found by
substituting the acoustic velocity (equation (2)) into the first term on the right hand
side of equation (3). Carrying out the volume integration from SE −LE /2 to
SE +LE /2 and differentiating with respect to time gives the following x and y
components of the shaking force due to the rate of change of momentum,

FV (t)=
4PA

LE

l

160LE

l 1
2
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l 1−cos 02p
SE

l
− p

LE

l 1
. (5)

Like the pressure force, the amplitude of the rate of change of momentum forms
a set of ellipses in the (Fx , Fy ) plane, as shown in Figure 3. These ellipses show
that, for the range of frequencies studied here, increasing the sound frequency
increases the rate of change of fluid momentum linearly, i.e., a doubling of
frequency produces a doubling in the major axis. At the highest frequency tested
in this study, the magnitude of the rate of change of fluid momentum is 50% of
the pressure force magnitude and it acts in a different direction.

It can be shown [9] that the force resulting from the net momentum flux out
of the control volume (second term on right hand side of equation (3)) is very small
compared to the other terms of equation (3) in the absence of an average fluid
flow through the piping. The total restraining force, FR , calculated from equation
(3) is shown in Figure 4. Note the difference between the restraining force (Figure
4) and the pressure force alone (Figure 2) which is commonly used to estimate the
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restraining force. In particular, FR , which includes the rate of change of
momentum, has a different direction than −FP . This is demonstrated by the force
vectors for SE /l=0·6 as shown in Figures 2 and 4.

3. EXPERIMENTAL APPARATUS

Figure 5 shows the apparatus used to measure the dynamic restraint forces on
the pipe elbow. The test section was open to the atmosphere and consisted of two
schedule-40 ABS pipes connected with a 90° long-radius elbow. The pipe had an
inside diameter of 52·5 mm (20 nominal) and the elbow had a centreline radius of
curvature of R=61 mm (LE =96 mm). The lengths of the straight sections, L1 and
L2, were varied from 80·5 to 30·5 cm in 5 cm increments. Combinations of L1 and
L2 maintained an overall piping system length (including the elbow) of 1·206 m.
See Table 1 for a summary. The coupling between the straight pipe sections and
the elbow was designed to maintain a continuous acoustic path while isolating the
elbow from the vibration of the straight pipes. This was done by fitting the elbow
with stub pipes, and then tapering their wall thickness to produce sharp edges
which were brought very close to similarly sharp edges of the straight pipes (within
0·1 mm) and covered with thin latex sleeves. The elbow itself was held in place by
two uni-axial, piezoelectric force transducers (PCB model 201A) positioned so

Figure 3. Ellipses formed by parametric equation (5) for the component of restraining force
required to balance the momentum change within an elbow.
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Figure 4. Total forced required to restrain a piping elbow.

their measurement axes were normal to each other and in the plane of the elbow
centreline.

Calibration consisted of removing a static load normal to one transducer while
the voltage from both transducers was recorded. This procedure was then repeated
by removing a weight from the other transducer. The electrical signals from both

Figure 5. Experimental piping system.
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T 1

Pipe length combinations L1 and L2

L1 (cm) L2 (cm) L1 +L2 + elbow

80·5 30·5
75·5 35·5
70·5 40·5
65·5 45·5
60·5 50·5
55·5 55·5 1·206 m
50·5 60·5
45·5 65·5
40·5 70·5
35·5 75·5
30·5 80·5

transducers could then be combined linearly to give the components of the force.
Applying a load at various angles with respect to the axes of the transducer pair
showed that the error between the applied and indicated loads was always less than
7% in magnitude and less than 5° in direction. An inherent limitation of this force
measurement technique, which used only two transducers, was that the calibration
was strictly valid for only one value of the applied moment; this moment could
not be independently determined from the transducer signals during measurement.
To minimize this error, the calibration was made for zero applied moment and
the transducers were positioned such that their measurement axes intersected at
the centre of curvature of the elbow, a point about which the moment should be
very small. The electrical signals from the force transducers were amplified,
low-pass filtered, and sampled simultaneously using a 12-bit analog-digital
conversion.

A cone loud speaker was placed close to, but not touching, one end of the pipe
to drive the resonant sound field inside the piping system. By applying random
noise, the first three resonant frequencies of this system were determined to be 123,
251 and 379 Hz. These are very close to the first three theoretical open-ended
resonant frequencies and much lower than the cut-off frequency for the first
non-plane mode of 3829 Hz [10]. A 12·7-mm (0·5-in.) B&K microphone fixed to
the end of a long slender tube was traversed along the centreline of the open leg
of the piping system (L1) to measure the sound pressure. Typical sound pressures
were 124 to 130 dB (using a reference pressure of 2·0×10−5 Pa).

4. MEASUREMENTS

Experiments were conducted for three resonance frequencies and 11 elbow
positions relative to the pressure field (see Table 1 for details). For each case the
sound pressure along the pipe centreline and the restraining force components
were measured. In presenting these experimental results SE was measured from the
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effective end of the pipe which was determined by adding an end length correction
based on the sound speed (343 m/s).

The pressure measurements are shown in Figures 6(a–c), where the curve for
each elbow position is offset vertically by 0·1 units for clarity. This graph effectively
shows the start of the elbow (at the end of each curve) relative to the pressure
nodes; the midpoint of the elbow is pR/4 beyond the last measured point. Also
shown in these figures is the ‘‘theoretical pressure field’’ that would be expected
if the piping system behaved as an ideal one-dimensional air column with open
ends.

In the case of the 123-Hz driving frequency, the pressure distribution deviated
considerably from the theoretical sinusoidal wave pattern, and could be said to
contain several harmonic components. This also occurred for the 251-Hz driving
frequency, but to a much lesser extent. To confirm that this distortion was due
to the presence of the elbow, and not due to inadequacies in the cone speaker, the
elbow was replaced with a piece of straight pipe of equal centreline length. This
showed a pressure distribution very close to a sinusoidal curve, and it was therefore
concluded that it is not possible to establish a sinusoidal standing wave at the
lower frequency with the elbow present. As a result, any comparison between the
theoretical restraining force, which assumes a sinusoidal standing wave pattern,
and the one measured at 123 Hz has limited validity. However, the results do serve
as a demonstration of the strong effects of the elbow on the acoustic pressure field
and the consequent restraining forces.

The pressure measurements for the 379-Hz driving frequency show only a slight
distortion of the sinusoidal standing wave. An overview of the reaction forces
measured for 379 Hz is shown in Figure 7. Each pane of the figure corresponds
to a particular elbow position (shown on the graphs as SE /l); these can be matched
up with the corresponding pressure curves in Figure 6(c). The curves correspond
to the trajectory of the tip of the reaction force vector in the (Fx , Fy ) plane. This
figure clearly demonstrates the change in magnitude and direction of the dynamic
restraining force as the elbow position is moved through the standing wave. The
pane labelled ‘‘NOISE’’ was determined by sampling the signal from the force
transducers with the loudspeaker turned off and therefore includes all electrical
noise and background vibration. The total noise was 0·0017 N rms; appproxi-
mately twice the resolution of the force transducers.

The magnitude and direction of the reaction forces were determined by
calculating their root mean square value and least squares fitting a line to their
vector trajectories. These results are shown in Figure 8 for a 251-Hz driving
frequency and Figure 9 for a 379-Hz driving frequency. The angle f is measured
from the bisector of the elbow for convenience. Curves showing the theoretical
predictions of FR and FP are also shown. As noted earlier there is not only a
difference in the magnitude between FP and FR , but also a radical difference in
direction. The magnitude and direction of the measured forces agree with FR which
includes the rate of change of momentum in its calculation. The good agreement
between the theoretical estimates and the measurements of FR in the case of 379 Hz
is consistent with the close agreement between the assumed and measured
distributions of pressure.
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Figure 6. Measured pressure fields for first three resonant modes. (a) First mode (123 Hz) with
elbow positioned at SE /l=q, 0·160; w, 0·178; r, 0·196; e, 0·214; Q, 0·232; W, 0·250; R, 0·268;
E, 0·286; +, 0·304; ×, 0·322; P, 0·340; ——, theoretical pressure field. (b) Second mode (251 Hz)
with elbow positioned at SE /l=q, 0·317; w, 0·354; r, 0·390; e, 0·427; Q, 0·463; W, 0·500; R,
0·537; E, 0·573; +, 0·610; ×, 0·646; P, 0·683; ——, theoretical pressure field. (c) Third mode
(379 Hz) with elbow positioned at SE /l=q, 0·474; w, 0·529; r, 0·584; e, 0·640; Q, 0·695; W,
0·750; R, 0·805; E, 0·860; +, 0·916; ×, 0·971; P, 1·026; ——, theoretical pressure field.
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Figure 7. Trajectory of dynamic force vector on experimental elbow for various elbow positions
SE /l. Axes limits are −0·25 to 0·25 N for both x and y axes. SE /l=(b) 0·474, (c) 0·529, (d) 0·584,
(e) 0·640, (f) 0·695, (g) 0·750, (h) 0·805, (i) 0·860, (j) 0·916, (k) 0·971, (l) 1·026; (a) shows level of
noise in measurement system.

To evaluate the theoretical curves shown in Figure 4 more directly, curves of
this type have been constructed from the force measurements made for 379 Hz in
Figure 10. The dashed lines on this graph show the vector difference between
measured data points and the theoretical restraining force, FR .

5. DISCUSSION

The discrepancy between theory and experiment for the case of 379 Hz was less
than 1% in magnitude and 1·4° in direction when the elbow was positioned near
a pressure anti-node (SE /l=0·75) and 27% in magnitude and 43·5° in direction
with the elbow positioned near a pressure node (SE /l=0·5, 1·0). In the second
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instance, this is substantially greater than the level of error associated with the
static calibration (7% in magnitude and 5° in direction). An explanation for the
large error can be based on the relatively small forces which occur when the elbow
is positioned near a pressure node; the rms measurement noise level of
FN /PA=0·027 is about 20% of the signal. In the 251-Hz case, the sound pressure
was substantially weaker (124 versus 130 dB) and the signal to noise ratio even
smaller.

The case of 123 Hz did not provide a sinusoidal sound field by which the model
could be evaluated; however, it should be possible to extend the present analysis
to include a multi-harmonic sound field and thereby obtain a comparison. This
type of Fourier analysis could be further extended to the practical problem of
having broad band excitation of all the plane wave acoustic modes.

The results from this study could be incorporated in the dynamic evaluation of
a piping system design in much the same manner as existing design theory which

Figure 8. Normalized (a) force magnitude and (b) force direction for various elbow positions and
251 Hz driving frequency: W, measured; - - -, −FP ; ——, −FP +FV .
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Figure 9. Normalized (a) force magnitude and (b) force direction for various elbow positions and
379 Hz driving frequency: W, measured; - - - , −FP ; ——, −FP +FV .

considers only the fluid pressure. Once a model of the sound field within the piping
system is generated, the total shaking force can be evaluated using the present
analysis. This shaking force should be placed at the centre of curvature of the
elbow. When designing pipe supports with linkage or pins (which are free to move
in certain directions) the correct direction of the shaking force, as provided by this
method, may be critical to achieving proper support.

The application of the present results are, in the strictest sense, limited to cases
where there is no average flow through the pipe. A practical example of which is
where vortex shedding excites pressure waves in a closed side branch. Most often,
however, flow induced acoustics are accompanied by an average flow, and this
would produce several effects not considered in this study. First, the wall
turbulence and flow separation which occurs in most practical elbows would be
a local source of excitation. This would combine with other sources, but the result
would still be plane waves travelling along the length of the pipe. Second, the
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Figure 10. Measured and theoretical force on a pipe elbow for 379 Hz driving frequency: E,
measured; —— , −FP +FV ; – – – , difference.

average flow would have a Doppler effect on the frequencies and form of the
resonance in the pipe. This effect would be non-uniform because of the turbulent
flow distribution. In any case, this distortion scales with (1−Ma2)1/2, where Ma
is the flow Mach number [3], and this is typically small outside of valves or similar
flow restrictions in practical designs. Finally, an average flow would produce a net
change of momentum having steady and fluctuating parts. The steady part would
need to be supported but would not cause vibration. The fluctuating part, as
determined by equation (3), would be proportional to Ma. In summary, provided
that the noise sources are correctly modelled, the neglect of average flow through
the elbow is a reasonable approximation where the Mach number is low.

6. CONCLUSIONS

The dynamic restraining force required to hold a pipe elbow stationary when
subjected to a resonant internal sound field was measured and found to have a
magnitude and direction that varies as a function of the elbow’s position relative
to the standing sound wave and the sound frequency. It was further demonstrated
that a theoretical analysis could accurately predict the restraining force if the rate
of change of momentum of the fluid within the elbow was considered. By
comparison, the pressure force which acts on the elbow is only a suitable estimate
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of the restraining force when the frequency is low and the elbow is located near
a pressure anti-node.
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APPENDIX: NOMENCLATURE

A pipe cross-sectional area
c wave speed
es unit vector tangent to piping system centreline
F force magnitude
F' rms force magnitude
FP force vector due to fluid pressure
FR reaction force vector
LE elbow centreline length
p acoustic pressure
P acoustic pressure magnitude
P' rms pressure magnitude
s position along elbow centreline
S distance from pressure node
SE elbow position relative to a pressure node
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V fluid velocity
x unit direction vector
y unit direction vector
l sound wavelength
r fluid density
v sound frequency
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